A distributionally robust optimization approach to reconstructing missing locations and paths using high-frequency trajectory data
نویسندگان
چکیده
منابع مشابه
Data-driven Distributionally Robust Polynomial Optimization
We consider robust optimization for polynomial optimization problems where the uncertainty set is a set of candidate probability density functions. This set is a ball around a density function estimated from data samples, i.e., it is data-driven and random. Polynomial optimization problems are inherently hard due to nonconvex objectives and constraints. However, we show that by employing polyno...
متن کاملTractable Distributionally Robust Optimization with Data
We present a unified and tractable framework for distributionally robust optimization that could encompass a variety of statistical information including, among others things, constraints on expectation, conditional expectation, and disjoint confidence sets with uncertain probabilities defined by φ-divergence. In particular, we also show that the Wasserstein-based ambiguity set has an equivalen...
متن کاملDistributionally Robust Convex Optimization
Distributionally robust optimization is a paradigm for decision-making under uncertaintywhere the uncertain problem data is governed by a probability distribution that is itself subjectto uncertainty. The distribution is then assumed to belong to an ambiguity set comprising alldistributions that are compatible with the decision maker’s prior information. In this paper,we propose...
متن کاملFrom Data to Decisions: Distributionally Robust Optimization is Optimal
We study stochastic programs where the decision-maker cannot observe the distribution of the exogenous uncertainties but has access to a finite set of independent samples from this distribution. In this setting, the goal is to find a procedure that transforms the data to an estimate of the expected cost function under the unknown data-generating distribution, i.e., a predictor, and an optimizer...
متن کاملDistributionally Robust Optimization and Its Tractable Approximations
In this paper, we focus on a linear optimization problem with uncertainties, having expectationsin the objective and in the set of constraints. We present a modular framework to obtain an approx-imate solution to the problem that is distributionally robust, and more flexible than the standardtechnique of using linear rules. Our framework begins by firstly affinely-extending the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transportation Research Part C: Emerging Technologies
سال: 2019
ISSN: 0968-090X
DOI: 10.1016/j.trc.2019.03.012